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Creep motion in a random-field Ising model

L. Roters,* S. Lübeck,† and K. D. Usadel‡

Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, 47048 Duisburg, Germany
~Received 23 June 2000; published 24 January 2001!

We analyze numerically a moving interface in the random-field Ising model which is driven by a magnetic
field. Without thermal fluctuations the system displays a depinning phase transition, i.e., the interface is pinned
below a certain critical value of the driving field. For finite temperatures the interface moves even for driving
fields below the critical value. In this so-called creep regime the dependence of the interface velocity on the
temperature is expected to obey an Arrhenius law. We investigate the details of this Arrhenius behavior in two
and three dimensions and compare our results with predictions obtained from renormalization group ap-
proaches.
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I. INTRODUCTION

In recent years the understanding of driven interfaces
improved considerably. Well known models of such inte
faces are the equations of Edwards and Wilkinson@1# as well
as of Kardar, Parisi, and Zhang@2#. Of particular interest are
driven interfaces moving through a quenched disordered
dium, which exhibit a so-called depinning phase transiti
Without disorder the velocity of a driven interface grow
linearly with the applied driving force or driving field, re
spectively. This behavior changes in the presence
quenched disorder. For small driving fields the interface
pinned by the disorder. The interface moves only if the dr
ing field exceeds a critical value, i.e., on increasing the d
ing field a continuous phase transition from a pinned to
moving interface takes place~see, for instance,@3# and ref-
erences therein!. The expected dependence of the interfa
velocity on the driving field is sketched in Fig. 1. For ve
large driving fields the disorder can be neglected and co
quently the velocity depends linearly on the driving fie
The depinning transition happens due to the competition
tween the disorder and the driving field. The disorder
duces some effective energy barriers that suppress the i
face motion. The driving field reduces these energy barr
but they are overcome only if the driving field exceeds
critical value. Examples of systems exhibiting a depinn
transition are charge density waves@4,5# or field driven do-
main walls in ferromagnets@6#.

However, in the above scenarios thermal fluctuations
neglected. In real systems these fluctuations occur and
critical behavior is observed for finite temperatures. The r
son is that even below the critical driving field the ener
barriers can be overcome due to thermal fluctuations, res
ing in a moving interface. A striking effect of thermal fluc
tuations occurs at the critical field where the interface vel
ity v depends on the temperatureT according tov;T1/d with
an exponentd>1 @5,7–9#. Another effect of thermal fluctua
tions is the so-called creep motion that occurs for driv
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fields H well below the critical threshold at sufficiently low
temperatures. Here, the interface velocity is expected to
characterized by an Arrhenius behavior

v;e2E(H)/T ~1!

with a certain field dependent energy barrierE(H). Creep
motion was investigated, for instance, within the theory
flux creep phenomena@10# and in several renormalizatio
group approaches to the Edwards-Wilkinson equat
@11,12#. Experimentally, the Arrhenius behavior of the cre
regime was observed for magnetic domain wall motion
thin films composed of Co and Pt layers@13#.

In this paper we consider the interface motion occurr
in a driven random-field Ising model~RFIM! in the creep
regime. In the next section we describe the details of
model and the simulations. In Secs. III and IV we investig
numerically the creep motion of the interface in the two a
three dimensional RFIM. In particular, we show that the v
locity behavior can be described by an ArrheniusAnsatzand
we investigate the temperature and field dependence of

FIG. 1. Schematic sketch of the interface velocityv of the pin-
ning phase transition and its dependence on the driving fieldH. The
bold line corresponds to zero temperature,T50. For small but fi-
nite temperatures the critical behavior is smeared out~thin solid
line!. The creep regime for small driving fields is characterized
an Arrhenius like behavior with an effective energy barrierE.
©2001 The American Physical Society13-1
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prefactor of the Arrhenius law and study the energy bar
E(H). In Sec. V we summarize and discuss our results.

II. MODEL AND SIMULATIONS

To study the creep regime we consider the RFIM on
square or simple cubic lattice of linear sizeL. The Hamil-
tonian of the RFIM is given by

H52
J

2 (
^ i , j &

SiSj2H(
i

Si2(
i

hiSi , ~2!

where the first term characterizes the exchange interactio
neighboring spins (Si561). The sum is taken over all pair
of nearest neighbor spins. The spins are coupled to a ho
geneous driving fieldH and to quenched random fieldshi
which we choose to be uncorrelated (^hihj&}d i j ) with ^hi&
50. Throughout this paper we consider uniformly distri
uted disorder, i.e., the probability densityp that the random
field takes some valuehi is given by

p~hi !5H ~2D!21 for uhi u,D

0 otherwise.
~3!

Using antiperiodic boundary conditions an interface is
duced in the system which can be driven by the fieldH ~see
@9# for details!. Starting with an initially flat interface we
apply a Glauber dynamics with random sequential upd
and heat-bath transition probabilities~see, for instance,@14#!.
In our simulations the interface moves along the@11# and
@111# direction of a simple cubic lattice. This is a natur
choice since in the absence of disorder interface motion
curs for any finite driving field@8#. This property is an ad-
vantage, especially in the creep regime where the interfac
driven by small driving fields at low temperatures.

The basic quantity in our simulations is the velocity of t
moving interface, which is determined in the following wa
The interface movement corresponds to an increasing m
netization which is monitored as a function of time, i.e., t
number of Monte Carlo steps per spin. Starting from a
interface the system after a certain transient regime reach
steady state where the average magnetization grows line
in time. The velocity of the interface is defined as the tim
derivative of this magnetization. Spin flips outside the int
face may also occur, caused by the finite temperature. T
isolated, rare spin flips are unstable for sufficiently sm
temperatures, i.e., they flip back in the next update. T
these spin flips do not affect the measurement of the glo
average magnetization time dependence and therefore d
affect the determination of the interface velocity.

During its motion the originally flat interface roughen
due to the disorder. The width of the interface increases
finally reaches a stationary state. For the data presente
this paper we have verified that the interface width rema
small as compared to the extension of the system per
dicular to the interface.
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III. CREEP MOTION IN THE TWO DIMENSIONAL RFIM
MODEL

We measured the velocity of the interface in the cre
motion regime. Since the creep regime is ‘‘far away’’ fro
the critical point, we expect that finite-size effects can
neglected. Investigations of various system sizes confirm
assumption and we use therefore in our simulations a la
number of update steps instead of large system sizes.
performed for each temperature and field value at least5

Monte Carlo steps. Additionally we focus our analysis
one value of the disorder strength (D51.2). We have also
performed some spot checks at different values ofD in order
to confirm that the results are not sensitive to the disor
strength.

As mentioned above the velocity is expected to obey
Arrhenius law

v~H,T!5C~H,T!e2E(H)/T ~4!

in the creep regime. The effective energy barrierE(H) is
independent of the temperature and tends to zero foH
→Hc . Following a renormalization group analysis@11# we
assume that the temperature dependence of the prefact
the Arrhenius law is characterized by a power-law behav

C~H,T!5c~H !T2x ~5!

with some particular exponentx. Independent of the actua
value ofx the interface motion stops for any finite value
the energy barrier (H,Hc) in the limit T→0.

In the first step of our analysis we determine the expon
x. In an Arrhenius plot lnvT x vs 1/T the exponentx is varied
until straight lines are obtained. Good results are found
x50.8960.17 and the corresponding curves are shown
Fig. 2.

A regression analysis of these curves then yields the va
of the prefactorc(H) and the value of the energy barrie
E(H) @Eqs.~4! and~5!#. The results are plotted in Fig. 3. O
increasing the driving field the effective energy barrier d
creases as expected. But the prefactor of the Arrhenius
displays no significant field dependence, i.e.,c(H)5const.
This is confirmed by Fig. 4 which was obtained by plottin
ln vT x as a function ofE(H)/T. The curves for different
values of the driving field are seen to coalesce to a sin
curve, which happens only ifc(H)5const.

We analyze the field dependence of the energy bar
starting from a recently performed renormalization group
proach@11#, assuming

E~H !5E0F S Hc

H D m

21G . ~6!

On approaching the critical field of the depinning transiti
Hc the energy barrier vanishes. The value of the critical fi
Hc51.1260.02 is obtained from an independent simulati
at zero temperature. Thus we plotted the rescaled veloc
as a function of (Hc /H)m21 and tried to obtain a coales
cence of the data similar to Fig. 4 by varying the exponentm.
3-2
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~See Fig. 5!. Our analysis shows that only a logarithmic fie
dependence form→0 fits the data, i.e.,

E~H !5E0 lnS Hc

H D ~7!

~see Fig. 6!. As one can see in Fig. 6 the logarithmicAnsatz
yields a quite convincing fit. Our analysis therefore sugge
that the effective energy barrier displays a logarithmic fi
dependence.

FIG. 2. The interface velocityv as a function of the temperatur
T for various values of the driving field (H
P$0.25,0.3,0.35, . . . ,0.6% from bottom to top! and D51.2. Ac-
cording to Eq.~4! we plot lnvT x vs 1/T. On varying the exponen
x we obtained nearly straight lines forx50.8960.17. The cutoffs at
low and high temperatures are caused by different effects. At
temperatures the interface can be pinned for finite time inter
depending on the particular disorder configuration. In this case
interface displays a stop and go behavior which results in str
velocity fluctuations~not shown for clarity!. The cutoff for largev
occurs because the creep regime is exited at high temperatur
high driving fields.

FIG. 3. The energy barrierE and the prefactorc @see Eqs.~4!
and ~5!# as a function of the driving fieldH. To avoid an overlap
between the two curves we plotc21 instead ofc.
02611
ts

IV. THE THREE DIMENSIONAL MODEL

We next analyze the interface velocity of the three dime
sional model forD51.7. For this value of the disorder th
critical behavior has been investigated and the correspon
critical field has been found to beHc51.3760.01@9#. As for
the two dimensional model we have also performed so
simulations for values different fromD51.7 to ensure that
the main results discussed below do not depend on the
ticular choice ofD.

By driving the interface at finite temperatures and fie
below the critical threshold we measured the veloc
v(H,T). Again, we fitted the simulation data to Eqs.~4! and
~5! by varyingx to get straight lines in the lnvT x vs 1/T plot.
A good fit is obtained usingx50.7960.09 ~Fig. 7!.

The result of the regression analysis forE(H) andc(H)
is shown in Fig. 8. As in the two dimensional caseE(H)
decreases with increasing driving field and the prefacto

w
ls
e
g
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FIG. 4. The rescaled interface velocity lnvT x vs E(H)/T. The
values of the energy barrierE(H) are obtained from a regressio
analysis of the corresponding curves of Fig. 2. The data colla
confirms that the prefactorc displays no significant field depen
dence@Eqs.~4! and ~5!#.

FIG. 5. The rescaled interface velocity lnvT x as a function of
@(Hc /H)m21#/T @see Eq.~6!#. No coalescence of the data could b
obtained for any finite value ofm. But with decreasing exponentm
the coalescence becomes better. The figure shows the corres
ing curves form50.05.
3-3
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essentially independent of the driving field. On plotting t
rescaled interface velocities vsE(H)/T the data coalesce
~see Fig. 9! only if c(H)5const.

We consider now the field dependence of the energy
rier. In analogy to the previous section we check the con
tured field dependence obtained from a renormaliza
group approach. Applying the data of the interface velocit
to the ansatz Eq.~6! yields a similar result as in two dimen
sions, i.e., the accuracy of the data collapse increases fm
→0. Therefore we again assume that the dependence o
energy barrier on the driving field displays a logarithm
behavior@Eq. ~7!#. The corresponding curves are shown
Fig. 10. As can be seen the logarithmicAnsatzyields a good
fit of the velocity data in the creep regime.

But we have to admit that in contrast to the two dime
sional case we observe here that differentAnsätze for the
field dependence of the energy barrier may also lead to
of the data. For example, several authors conjectured tha
energy barrier is given by

FIG. 6. The rescaled interface velocity lnvT x as a function of
ln(Hc /H)/T. This logarithmicAnsatzyields a quite convincing data
collapse, i.e., this result suggests that the field dependence o
energy barrier is given by Eq.~6! in the limit m→0.

FIG. 7. Interface velocities of the three dimensional model
different temperatures and driving fields (H50.3,0.35,0.4, . . . ,0.6,
from bottom to top!. On varying the exponentx we obtained nearly
straight lines forx50.7960.09.
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E~H !5E0S Hc

H D m

~8!

for H!Hc . Note that Eq.~8! agrees with the one discusse
above @Eq. ~6!# for sufficiently small driving fields. The
aboveAnsatzwas derived within a theory of flux creep be
havior @10# and is expected to hold for the present situati
of driven interfaces. In this case the exponentm is given by
m5(2z1D23)/(22z) with z denoting the roughness ex
ponent of the interface at the depinning transition~see
@12,13# and references therein!. For the Edwards-Wilkinson
equation with quenched disorder,z5(52D)/3 has been de-
termined by ane expansion within a renormalization grou
scheme@15#. This value is believed to be exact to all orde
of e @16#, and inserting it into the formula above yieldsm
51, independent ofD.

Fitting our data according to Eq.~8! yields m50.825
60.1 ~Fig. 11!. The accuracy of the fit is similar to the on
obtained from the logarithmicAnsatzof E(H). Thus, in the
three dimensional case one cannot infer the correct exp
sion of the energy barrier from the accuracy of the data

the

r

FIG. 8. The energy barrierE and the prefactorc @see Eq.~5!# as
a function of the driving fieldH.

FIG. 9. On rescaling the interface velocities with the nume
cally determined energy barrierE(H) the data shown in Fig. 7
coalesce onto one single curve. As in the two dimensional case
behavior shows thatc(H)'const@see Eq.~5!#.
3-4
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On the other hand, the driving fields consideredH
50.3, . . .,0.6) are of the same order as the critical va
(Hc'1.37) while Eq.~8! is believed to be valid only in the
limit H!Hc .

V. DISCUSSION AND CONCLUSION

We investigated numerically the creep motion of a driv
interface of a RFIM model in the limit of low temperature
and small driving fields. We found that the interface veloc
obeys an Arrhenius law, which was investigated in det
We assumed that the prefactor of the Arrhenius law can
written asC(H,T);c(H)T2x. Applying this Ansatzto the
numerically determined interface velocities, we find a po
tive exponentx for the two and three dimensional mode
Additionally, our results suggest thatc(H) is independent of
the driving field in both cases. These results are in contra
tion to a renormalization group analysis@11# in which ~i! x is
claimed to be negative and~ii ! c(H) is found to exhibit a
significant field dependence@c(H);Hs with s.0]. In par-
ticular, the opposite sign of the exponentx is remarkable.

Knowing the prefactorC(H,T), it is possible to investi-
gate the driving field dependence of the energy barrierE(H).

FIG. 10. Equation~6! results in a logarithmic dependence of th
energy barrier on the driving field form→0. The figure shows the
interface velocities, which are rescaled according to Eq.~7!.
e
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Our numerical results are in agreement with the assump
that the energy barrier depends logarithmically in both
mensions on the driving field. Again this result is in contr
diction with both phenomenological theories and renorm
ization group approaches, which conjecture an algeb
behavior@11–13#. The logarithmic behavior can can be e
plained if one assumes that the exponent of the algeb
behavior tends to zero. But in@11–13# a finite value of the
corresponding exponent is predicted.

Thus our analyses reveal that the driven interface o
RFIM displays creep motion in the limit of low temperatur
and small driving fields characterized by an Arrhenius law
predicted by phenomenological and renormalization gro
approaches. The details of the Arrhenius law~prefactor and
energy barrier! differ, however, from the predicted behavio
Further investigations are needed to understand these d
ences.
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FIG. 11. Scaling plot for theAnsatzof the energy barrier ac-
cording to Eq.~8!. From the data collapse one obtainsm50.825
60.1.
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